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1. Introduction

The discovery of holographic gauge/gravity dualities has been a key development in modern

string theory. Such dualities relate quantum theories of gravity in high dimensions to

quantum theories in lower dimensions on fixed metric backgrounds. The best understood

such dualities occur in AdS/CFT [1] and matrix theory [2], in which the non-gravitating

theories are local. Such dualities provide new insights into both gravity and, in the case of

AdS/CFT, into strongly coupled gauge theories.

Another well known, but less well-studied class of dualities relates little string theories

to asymptotically linear dilaton spacetimes [3, 4]. Interestingly, little string theories are

non-local [4] (see [5, 6] for reviews). On general grounds, one might expect non-locality to
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be generic within the set of all holographic duals to gravitating bulk theories. This already

strongly motivates the study of holography in linear dilaton backgrounds, in an attempt to

gain insights into the more generic situation.1 A more specific motivation, however, is the

similarity between linear dilaton asymptotics and asymptotic flatness. For example, the

conformal completion of a linear dilaton spacetime has a null boundary. This similarity has

been noted in various contexts [11 – 13], and was recently reemphasized in [14] where it was

used to motivate a framework for gauge/gravity dualities in asymptotically flat spacetimes.

In this work, we reverse the flow of information, using techniques [15, 16] developed for

asymptotically flat spacetimes to holographically renormalize the action for certain linear

dilaton spacetimes. Our main interest is in ten dimensional spacetimes with linear dilaton

asymptotics dual to 5+1 little string theory with SO(4) internal symmetry, associated with

an S3 factor in the bulk. Through this S3 pass N units of flux of the NS-gauge field strength

H3 = dB2. We develop a set of counterterms which guarantee that (i) the on-shell action

is finite and (ii) asymptotically linear dilaton solutions are stationary points of the action

under all boundary condition preserving variations. We also study the boundary stress

tensor and other ‘response’ functions defined by this action and show that they lead to

standard results [17 – 22, 42] for the conserved charges of thermally excited linear dilaton

spacetimes.

The plan of the paper is as follows. Section 2 briefly reviews the relevant linear dila-

ton backgrounds and introduces the framework for calculations in the remaining sections.

Section 3 performs a holographic renormalization for a toy model of the system of interest,

obtained by removing the S3 factor and replacing the NS gauge field with an exponen-

tial potential for the dilaton. This toy model illustrates the main features of the full

ten-dimensional system, but greatly simplifies the equations. We then analyze the full ten-

dimensional system in section 4. In particular, we construct counterterms for the NS sector

of Type II supergravity with our asymptotics. We also construct the renormalized stress

tensor and an analogous scalar response function and discuss the conserved charges. In sec-

tion 5, as an application of our formalism, we discuss thermodynamics of finite temperature

little string theory. Finally we close with some discussion in section 6.

2. Review of linear dilaton backgrounds

In this section we briefly review the connection between little string theories and lin-

ear dilaton backgrounds, and state a definition of linear dilaton asymptotics. We also

note the similarity between the Einstein-frame description of linear dilaton spacetimes and

Minkowski space. Due to this similarity, one expects that techniques developed for asymp-

totically flat gravity will prove useful in the study of linear dilaton spacetimes. Indeed, in

sections 3 and 4 below, we follow the construction and analysis of counterterms described

in [15, 16] for the gravitational action in asymptotically flat spacetimes.2

1One might also study non-commuting theories with gravity duals [7 – 10].
2These methods were in turn inspired by the construction of AdS gravitational counterterms, see e.g. [23,

24]. See also [25 – 28] for other asymptotically flat counterterms.
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Many gauge/gravity dualities can be constructed by taking decoupling limits of various

brane configurations [1, 29, 30]. In the bulk, this limit typically yields the near-horizon

limit of some BPS brane solution. In particular, it was shown in [4] that the decoupling

limit on coincident NS5 branes yields a linear dilaton spacetime associated with the NS5

‘throat.’ The non-gravitating dual is a low-energy limit of the NS5-brane theory which, in

contrast to the more familiar D3-brane context, retains a full tower of excited open strings

and, as a result, does not reduce to a local field theory.

Our focus here will be on the bulk gravitating description of the decoupling limit.

In the string frame, the near-horizon description of N coincident NS5-branes takes the

familiar form

ds2
string = dx2

6 + Nα′ (dσ2 + dΩ2
3

)

, (2.1)

Φ = −σ, (2.2)

H3 = 2Nα′ǫS3, (2.3)

where dx2
6 is the 6-dimensional Lorentzian metric and α′ = ℓ−2

s sets the string tension. Here

Φ is the ten-dimensional dilaton and H3 = dB2, where B2 is the NS-NS two-form potential.

In the strong coupling regime at large negative σ, the physics is more properly described

by the near-horizon metric of N M5-branes on an S1. However, we will be interested only

in the asymptotics at large σ where M-theoretic corrections are heavily suppressed.

We wish to holographically renormalize the NS-sector of the bulk action, including in

particular the gravitational terms. As a result, it is natural to work in the Einstein frame.

In this frame (2.3) takes the tantalizing form [14]

ds2 = dρ2 + ρ2

(

dy2
6 +

1

16
dΩ2

3

)

, (2.4)

Φ = −4 ln
ρ

4
√

Nα′ , (2.5)

H3 = 2Nα′ǫS3 . (2.6)

where ρ = 4e
σ
4

√
Nα′ and yi = xi

4
√

Nα′
. While (2.6) is not asymptotically flat, one may note

that the metric components involve the same powers of ρ as for flat Minkowski space in

hyperbolic coordinates:

ds2
Mink = dρ2 + ρ2ωijdηidηj , (2.7)

where ρ2 = xax
a, ωij is the metric on the unit (d − 1)-dimensional Lorentz-signature

hyperboloid H, and ηi are coordinates on H. It is the similarity of (2.4) and (2.7) which

leads one to expect that techniques developed for asymptotically flat gravity will prove

useful in the study of linear dilaton spacetimes.

We wish to consider general classes of spacetimes which approach solutions similar

to (2.4)–(2.6) at large values of some radial coordinate ρ. For generality, let the coordinates

xi parametrize the hypersurface Σρ at any fixed value of ρ, which we take to have dimension

d− 1. If nµ is the unit (outward-pointing) normal to Σρ, then the induced metric on Σρ is

hµν = gµν − nµnν , (2.8)
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and the Einstein frame metric on the bulk spacetime can be decomposed as

ds2 = gµνdxµdxν =
(

N2 + NiN
i
)

dρ2 + 2Nidxidρ + hijdxidxj . (2.9)

Here N and N i are analogous to the ‘lapse’ and ‘shift’ functions of the ADM decompo-

sition [31], and the metric (2.9) describes the spacetime in a general gauge. Since our

spacetime should asymptotically resemble (2.4), we impose N → 1, N i → 0.

In analogy with established methods in asymptotically flat spacetime [32 – 35] we con-

sider the case where each function in (2.9) can be expanded in an asymptotic series in 1/ρ,

at least to an order to be specified below. In fact, we will find in sections 3 and 4 below

that for the cases of interest (d > 4), we may impose N = 1 + O(ρ−2), N i = O(ρ−2). As a

result, one may find a diffeomorphism which sets N = 1, N i = 0 identically, so that ρ is a

Gaussian normal coordinate.3

Thus, our Einstein frame metric admits an expansion of the form

ds2 = dρ2 + hijdxidxj (2.10)

= dρ2 + ρ2

(

h0
ij +

h1
ij

ρℓ
+

h2
ij

ρℓ+1
+ . . .

)

, (2.11)

where ℓ ≥ 2 is an integer to be determined separately for each particular model below. We

assume that the dilaton Φ and three form Hµνσ can similarly be expanded in the form

Φ = −4 ln ρ + 4 ln 4 +
α(x)

ρℓ
+

α2(x)

ρℓ+1
+ . . . (2.12)

βijk := Hijk = 2Nα′ǫS3 +
β1

ijk

ρℓ
+

β2
ijk

ρℓ+1
+ . . . (2.13)

αij := H⊥ij =
α1

ij

ρℓ
+

α2
ij

ρℓ+1
+ . . . , (2.14)

where we have introduced the electric (αij) and magnetic (βijk) parts of Hµνσ. We will

understand “asymptotically linear dilaton spacetimes” to be of the form eq. (2.10)–(2.14)

for values of ℓ described below.

3. A toy model

In this section we consider a model graviton-dilaton system whose solution set includes

the linear dilaton spacetime, but without the complication of the three-form gauge field

H = dB which is present in the full type II system. Our toy model is formulated on

a spacetime which is topologically R
10 and, in the Einstein frame, the (unrenormalized)

action is

S =

∫

M

√−g

[

R − 1

2
(∇Φ)2 + 4e

Φ

2

]

+ 2

∫

∂M

√
−hK, (3.1)

3For d = 4 one has N = 1 + O(1/ρ) so that such a diffeomorphism would introduce logarithmic terms

in the expansion of the metric hij and spoil the assumption above.
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where R is the spacetime Ricci scalar and Φ is the ten dimensional dilaton. The boundary

term is the standard Gibbons-Hawking term where K is the trace of the extrinsic curvature

of the boundary at spatial infinity. The field equations for this action are

Rab =
1

2
∇aΦ∇bΦ − 1

2
gabe

Φ

2 , (3.2)

¤Φ = −2eΦ/2. (3.3)

The linear dilaton spacetime

ds2
string = dσ2 + dxidxi, (3.4)

Φ = −σ (3.5)

is a solution to this model, where ds2
string = eΦ/2ds2

Einstein is the metric in the string frame

and the xi denote 9 flat directions. In the Einstein frame, this solution takes the form

ds2 = dρ2 + ρ2(dyidyi) (3.6)

Φ = −4 ln ρ + 4 ln 4, (3.7)

where ρ = 4e
σ
4 and yi = xi/4.

We wish to construct counter-terms which, when added to the action (3.1) make it

both finite and stationary on all asymptotically linear dilaton solutions. As stated in

section 2, an asymptotic linear dilaton spacetime should be of the form (2.11), (2.12) for

some ℓ. However, we need to choose a physically appropriate value of ℓ, following the usual

guidelines that i) ℓ be small enough to allow a physically interesting class of solutions and

ii) ℓ be large enough that the phase space is well-defined.

The correct answer can also be read off from a physically interesting class of solutions.

In particular, R
8 times Witten’s two dimensional black hole is naturally taken to describe

thermal excitations of the above vacuum. In Einstein frame, this solution takes the form

ds2 = e
a
4

√
cosh σ

[

− tanh2 σdt2 + dσ2 +
8

∑

i=1

dxidxi

]

, (3.8)

Φ = − ln cosh σ − a

2
. (3.9)

It can be readily verified that this solution asymptotes to (3.6)–(3.7) with falloff conditions

given by (2.11), (2.12) with ℓ = 8, and one expects other interesting solutions to have the

same fall-off properties. We shall henceforth require asymptotically linear dilaton solutions

of our toy model to be of the form (2.11), (2.12) for ℓ ≥ 8. We will see below that this

guarantees that the conserved quantities are finite.

3.1 Covariant counterterms

The onshell value of the action (3.1) diverges for the background (3.6)–(3.7) and, as will

see below, (3.1) also fails to be fully stationary on all asymptotically linear dilaton solu-

tions. However, both of these problems may be cured by adding appropriate covariant

counterterms on the boundary, in the spirit of holographic renormalization [36 – 38].
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Our counter-term construction uses techniques developed for asymptotically flat grav-

ity in [15, 16]. Here we outline some essential elements of the construction. The counter-

terms proposed in [15] are based on the Gauss-Codazzi equations. In particular, the renor-

malized action of [15] takes the form

S =

∫

M

√−gR + 2

∫

∂M

√
−h(K − K̂), (3.10)

where Kij = hi
k∇knj is the extrinsic curvature of the boundary ∂M (considered as a

surface of large constant ρ) which gives the familiar Gibbons-Hawking boundary term, and

the “counterterm” is constructed from K̂ := hijK̂ij. This K̂ij may be roughly thought of

as ‘the extrinsic curvature which would be obtained if the boundary were embedded into

flat Minkowski space.’ More precisely, K̂ij is defined to satisfy

Rij = K̂ijK̂ − K̂m
i K̂mj , (3.11)

where Rij is the Ricci tensor of the boundary metric hij on ∂M and we follow the conven-

tions of Wald [31]. The point is that (3.11) has the same form as a Gauss-Codazzi equation

for an embedding of the boundary into a spacetime of vanishing Riemann curvature. Thus,

when the boundary can be embedded into a flat spacetime, the extrinsic curvature of this

embedding is indeed K̂ij . However, even when such an embedding is not possible (the

generic situation in 4 or more spacetime dimensions), equation (3.11) can be solved to

yield a useful counter-term for the action.

Our linear dilaton counterterms take a similar form:

Sct = Sct
K̂

+ Sct
Φ = −2

∫

∂M

√
−hK̂ +

1

2

∫

∂M

√
−he

Φ

4 . (3.12)

Here K̂ := hijKij and K̂ij is now re-defined to satisfy

Rij +
1

2
e

Φ

2 hij = K̂ijK̂ − K̂ikK̂
k
j , (3.13)

where Rij is the Ricci tensor of the boundary metric hij . The extra term 1
2e

Φ

2 hij in (3.13)

guarantees that K̂ij and Kij agree to leading order. Below, we show in section 3.1.1 that

the resulting total action is finite on shell, and in section 3.1.2 that it is stationary on

solutions when varied within the class of asymptotically linear dilaton spacetimes.

3.1.1 The on-shell action

We now address the divergences of the on-shell action. The Gibbons-Hawking term and

the bulk terms both diverge, and the divergences do not cancel. Considering first the

Gibbons-Hawking term, one notes that expanding (3.13) in powers of ρ yields

K̂ij = Kij(1 + O(ρ−8)) = ρh0
ij(1 + O(ρ−8)). (3.14)

But the leading divergence in the Gibbons-Hawking term is only of order ρ8. Thus, all

on-shell divergences from the Gibbons-Hawking boundary term are exactly cancelled by

the K̂ counterterm for any asymptotically linear dilaton solution.

– 6 –
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Similarly, for asymptotically linear dilaton solutions the on-shell bulk action is

Sbulk
onshell = −

∫

M

√−ge
Φ

2 = −2ρ8V9 + 8(ln ρ)

∫

∂M

√
h0(h1 + α) + finite. (3.15)

Now, as described in appendix C, the perturbative equations of motion imply the relation

R1
ij = −4(α + h1)h0

ij . (3.16)

Using this result together with the relation (3.30) one sees that the logarithmically divergent

term reduces to a total divergence on ∂M , and hence does not contribute.

The ρ8 divergence in (3.15) is precisely canceled by the second counterterm Sct
Φ ,

Sct
Φ =

1

2

∫

∂M

√
−he

Φ

4 = +2ρ8V9 + finite, (3.17)

so that the total action is finite onshell.

3.1.2 Variation of the action

The total action obtained by adding the covariant counterterms to the toy model action is

S = S0 + Sct
K̂

+ Sct
Φ , (3.18)

where

S0 =

∫

M

√−g

[

R − (∇Φ)2

2
+ 4eΦ/2

]

+ 2

∫

∂M

√
−hK, (3.19)

Sct
K̂

= −2

∫

∂M

√
−hK̂, (3.20)

Sct
Φ =

1

2

∫

∂M

√
−heΦ/4. (3.21)

Having shown that the onshell action is finite, we now argue that the variations of this

action vanish when our boundary conditions (2.11–2.12) are preserved. Now, when the

equations of motion hold, it is clear that the variation of the action can be written as

a boundary term. However, the point here is to show that the resulting boundary term

vanishes as well. By direct calculation one finds that the boundary terms are

δS0 =

∫

∂M

√
−hπijδh

ij −
∫

∂M

√
−h(nµ∂µΦ)δΦ, (3.22)

δSct
K̂

= −2

∫

∂M
δ(
√
−hK̂), (3.23)

δSct
Φ =

1

8

∫

∂M

√
−heΦ/4δΦ − 1

4

∫

∂M

√
−he

Φ

4 hijδh
ij , (3.24)

where

πij = Kij − Khij, (3.25)

and

δ(
√
−hK̂) =

√
−h

(

1

2
K̂hijδhij + K̂ijδh

ij + hijδK̂ij

)

. (3.26)
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As in [15], one may solve for hijδK̂ij as a series in ρ−1 by considering the variation of

the defining equation (3.13) and expanding in powers of ρ−1. One finds

δK̂ijh
ij = −ρh0

ijδh
ij +O

(

δh

ρℓ−1

)

+
9

4ρ
δΦ+O

(

δΦ

ρℓ+1

)

+
1

16ρ
h0ijδRij +O

(

δR
ρℓ+1

)

. (3.27)

Substituting this into the variation of the K̂ counterterm action and taking the limit ρ → ∞
yields

δSct
K̂

= 9ρ10

∫

∂M

√

−h0h0
ijδh

ij − 9ρ8

2

∫

∂M

√

−h0δΦ, (3.28)

where we have discarded the term

1

8ρ

∫

∂M

√
−hh0ijδRij , (3.29)

which is a total divergence on ∂M . This last fact may be seen by using the relation (see

e.g. [31])

δRij = −1

2
hklDiDjδh

1
kl −

1

2
hklDkDlδh

1
ij + hklDkD(iδh

1
j)l, (3.30)

where Di is the covariant derivatives with respect to the metric hij . It is clear that replacing

h0ij in (3.29) by hij would yield a total divergence, but h0ij and hij differ by a term of

sufficiently high order so as not to change (3.29) in the limit ρ → ∞.

The other terms give

δS0 = −8ρ10

∫

∂M

√

−h0h0
ijδh

ij + 4ρ8

∫

∂M

√

−h0δΦ (3.31)

δSct
Φ =

ρ8

2

∫

∂M

√

−h0δΦ − ρ10

∫

∂M

√

−h0h0
ijδh

ij . (3.32)

Thus, we have

δS = δS0 + δSct
K̂

+ δSct
Φ = 0. (3.33)

With our choice of counterterms, variations of the total action within the space of asymp-

totically linear dilaton spacetimes vanish on solutions of the field equations.

3.2 The boundary stress tensor

The counterterms constructed in section 3.1 are local functionals of the boundary fields

{hij ,Φ} on ∂M . In analogy with the AdS construction, one might like to obtain holographic

one-point functions (such as the boundary stress tensor) by varying the on-shell action

with respect to {hij ,Φ}. Such an approach should be possible, though it is complicated by

the “momentum-dependent renormalization” (see e.g. [12]) characteristic of linear dilaton

backgrounds (and of asymptotically flat space).4

4Since variations of the total action about solutions vanish when the variations preserve the asymptot-

ically linear dilaton boundary conditions, this method also requires an extension of S to other boundary

conditions (at least perturbatively).
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However, another approach [39] is to define a boundary stress tensor via the ρ0 → ∞
limit of variations of the cut-off actions Sρ0

, defined by computing S (with all counter-

terms) for a spacetime M given only by the region ρ ≤ ρ0. Here we follow the treatment

of [15]. Specifically, we define

Tij(ρ) =
−2√
−h

δSρ0

δhij
, (3.34)

This stress tensor is conserved in the sense that

DiTij = 0 (3.35)

on Σρ at each value of ρ. We also define an analogous scalar response function:

jΦ(ρ) =
1√
−h

δSρ0

δΦ
. (3.36)

This response function is related (up to appropriate momentum-dependent renormaliza-

tion) to the one-point function for the operator OΦ dual to Φ in the little string theory.

Tracing through the analysis of variations in section 3.1.2 shows that (3.34) and (3.36) are

respectively of order ρ−7 and ρ−9 for asymptotically linear dilaton solutions. Thus, it is

natural to introduce

T̃ij = lim
ρ→∞

ρ7Tij , and j̃Φ = lim
ρ→∞

ρ9jΦ. (3.37)

Taking the large ρ limit of (3.35), one notes that D0
i T̃

ij = 0, where D0
i is the torsion-free co-

variant derivative compatible with h0
ij . After some calculation one finds (see appendix A.1)

T̃ij =
1

4

[

−(h1 − 8p1 + 7p̂1 + 2α)h0
ij + h1

ij − 8p1
ij + 7p̂1

ij

]

, (3.38)

j̃Φ =
1

8

(

47α − 4h1 + 4p̂1
)

, (3.39)

where we have used the expansions (see also appendix B of [16])

pij =
1

ρ
Kij = h0

ij +
1

ρℓ
p1

ij +
1

ρℓ+1
p2

ij + . . . and (3.40)

p̂ij =
1

ρ
K̂ij = h0

ij +
1

ρℓ
p̂1

ij +
1

ρℓ+1
p̂2

ij + . . . . (3.41)

By the general arguments given in [15] (and based on those of [40]), these expres-

sions lead to conserved quantities which generate the expected asymptotic symmetries. In

particular, the generator of an asymptotic translation ξi is

Q[ξ] := lim
ρ→∞

∫

Cρ

√

−hCTijξ
inj

Cρ
, (3.42)

=

∫

C

√

−h0
C T̃ijξ

inj
C , (3.43)

where Cρ form a family of Cauchy surfaces within the constant ρ hypersurfaces Σρ, such

that C = limρ→∞ Cρ is a Cauchy surface in the boundary ∂M . In (3.42), (3.43) ni
Cρ

, ni
C

are unit normals to Cρ, C respectively in (Σρ, hij) and (∂M,h0
ij). In section 5 we verify

that (3.43) reproduces the mass of the thermally excited solution, and that T̃ij reproduces

the pressure.
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4. NS sector of type II supergravity

We now turn to the asymptotically linear dilaton spacetimes that arise in the type II string

theories dual to little string theories. We work in the semi-classical bulk approximation,

where the (unrenormalized) action with Gibbons-Hawking term takes the form

S0 =

∫

M

√−g

[

R − 1

2
∇µΦ∇µΦ − 1

12
e−ΦHµνρH

µνρ

]

+ 2

∫

∂M

√
−hK, (4.1)

in the Einstein frame, where Φ is the dilaton and H3 = dB2 in terms of the NS-NS two-

form potential B2. For simplicity we have set the overall normalization (16πGN ) of the

action (4.1) to unity. The resulting equations of motion are:

Rµν =
1

2
∇µΦ∇νΦ − 1

48
e−ΦHσκγHσκγgµν +

1

4
HµσκHν

σκ, (4.2)

¤Φ = − 1

12
e−ΦHσκγHσκγ , (4.3)

∇µ

(

e−ΦHµσκ
)

= 0. (4.4)

The linear dilaton solutions were already discussed in section 2. However, as in the

case of our toy model, we need to fix the fall-off parameter ℓ in our definition of ‘asymptot-

ically linear dilaton spacetimes.’ Again, we will read off this variable ℓ from a physically

interesting class of solutions describing thermal excitation over the background (2.4)–(2.6).

Such solutions are given by (see for example [41]):

ds2 = e
a
4

√
cosh σ

[

− tanh2 σdt2 + Nα′ (dσ2 + dΩ2
3

)

+ dx2
5

]

(4.5)

Φ = − ln cosh σ − a

2
(4.6)

H3 = 2Nα′ǫS3, (4.7)

from which it follows that ℓ = 8.

As in our toy model, counterterms must be added to S0 to obtain an action which is

both finite on-shell and stationary under all asymptotically linear dilaton variations. The

on-shell divergences are discussed below in section 4.1 and used to motivate a particular

choice of counter-terms which make the action finite on-shell. We then show that the re-

sulting action is stationary under all asymptotically linear dilaton variations in section 4.2.

4.1 Covariant counterterms and the on-shell action

Let us first consider the divergences in the bulk onshell action. Using equation (4.2) we

find the bulk onshell action to be

Sonshell
bulk = − 1

24

∫

M

√−ge−ΦH2, (4.8)

which for the linear dilaton background (2.4)–(2.6) diverges as

−2V9

ǫ8
, (4.9)
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where V9 is the volume of the boundary manifold (V9 = 1
43 V6(2π

2)) and ρ = 1
ǫ is an IR cut-

off. As in the case of our toy model, divergences from the Gibbons-Hawking boundary term

do not cancel divergences from the bulk action. We need to add appropriate counterterms.

Motivated by our toy model, the first counterterm we add is a K̂ counterterm

S1
ct = −2

∫

∂M

√
−hK̂ (4.10)

where this time K̂ is the solution of the following equation:

R̂ij := Rij +
1

2(Nα′)
eΦ/2hij −

1

4
e−Φβi

lmβjlm = K̂ijK̂ − K̂m
i K̂mj . (4.11)

The first two terms in R̂ij match (3.13), and the addition of the third term guarantees

that K̂ agrees with K to leading order. In particular,

K̂ij = Kij = ρh0
ij + O

(

h1
ij

ρℓ−1

)

, (4.12)

so that the onshell divergences from the Gibbons-Hawking boundary terms are exactly

canceled by (4.10).

We also add three additional counterterms:

S2
ct = −(Nα′)1/2

4

∫

∂M

√
−he−

5

4
Φβijkβ

ijk, (4.13)

S3
ct = +

(Nα′)3/2

16

∫

∂M

√
−he−

7

4
Φβimnβj

mnRij , (4.14)

S4
ct = +

7

2

∫

∂M

√
−he

1

4
Φ. (4.15)

The divergent contributions are

S2
ct ∼ −24

ǫ8
V9, (4.16)

S3
ct ∼

12

ǫ8
V9, (4.17)

S4
ct ∼

14

ǫ8
V9. (4.18)

Adding the bulk (4.9) and the counterterm contributions (4.16)–(4.18) yields a finite onshell

action.

4.2 Variation of the action

Having shown that the total action

Stot = S0 + S1
ct + S2

ct + S3
ct + S4

ct (4.19)

is finite onshell, we now show that the variations of this action vanish when our boundary

conditions (2.11)–(2.14) are preserved. Again when the equations of motion hold, it is

– 11 –
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clear that the variation of the action can be written as a boundary term. However, as

was in the case of our toy model, the point is to show that the resulting boundary terms

vanish as well. By direct calculation one finds that the variation of (4.1) (after imposing

the equations of motion) is

δS0 =

∫

∂M

√
−hπijδh

ij −
∫

∂M

√
−h(nµ∇µΦ)δΦ − 1

6

∫

∂M

√
−h(nµHµij)δBije

−Φ, (4.20)

where nµ is the unit normal pointing in the radial direction and

πij = Kij − hijK. (4.21)

For the background solution (2.4)–(2.6) one sees that nµHµνσ is zero, so the last term in

the variation does not contribute. To leading order the other two terms simplify to become

δS0 = −8ρ10

∫

∂M

√

−h0h0
ijδh

ij + 4ρ8

∫

∂M

√

−h0δΦ. (4.22)

We immediately note that these terms are non-zero for field variations which preserve our

boundary conditions. However, we will shortly see that the counterterms variations cancel

these terms. The variation of the first counterterm S1
ct is

δS1
ct = −2

∫

∂M
δ
(√

−hK̂
)

d9x (4.23)

where

δ
(√

−hK̂
)

=
√
−h

(

1

2
K̂hijδhij + K̂ijδh

ij + hijδK̂ij

)

. (4.24)

As in the case of our toy model, one may solve for hijδK̂ij as a power series in ρ−1 by

considering the variation of the defining equation (4.11) and expanding in powers of ρ−1.

One finds,

δK̂klh
kl = −1

2
ρh0

klδh
kl +

1

16ρ
h0ijδR̂ij + O

(

h1

ρℓ−1

)

, (4.25)

where the variation δR̂ij is given by

δR̂ij = δRij +
1

4(Nα′)
eΦ/2δΦhij +

1

2(Nα′)
eΦ/2δhij (4.26)

+
1

4
e−Φβi

lmβjlmδΦ − 1

4
e−Φ

(

δβilmβj
lm + βi

lmδβjlm + 2βipnβjm
nδhpm

)

.

Thus,

δS1
ct = 8ρ10

∫

∂M

√

−h0h0
ijδh

ij − 1

8ρ

∫

∂M

√
−hh0ijδR̂ij +

∫

∂M

√
−h

[

O
(

h1

ρℓ+1

)]

. (4.27)

The first term exactly cancels the first term in the variation (4.22). The second term has

various pieces and one of them is

1

8ρ

∫

∂M

√
−hh0ijδRij , (4.28)
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where δRij is the variation of the boundary Ricci tensor. To the requisite order the

integrand is a total divergence (see section 3.1.2), and gives no contribution.

We may further simplify δSct by using the explicit form (2.4)–(2.6) of the asymptotic

fields. To the leading order we find

δS + δS1
ct = −25ρ8

2

∫

∂M

√

−h0δΦ + ρ10

∫

∂M

√

−h0h0
ijδh

ij (4.29)

+
ρ8

46(Nα′)2

∫

∂M

√

−h0β0 imnδβimn +
ρ10

2

∫

∂M

√

−h0Ω0
mpδh

mp,

where Ω0
ij is the unit metric of S3. Similar calculations for the variations δS2

ct and δS3
ct

give the result

δS2
ct + δS3

ct = 9ρ8

∫

∂M

√

−h0δΦ − ρ8

46(Nα′)2

∫

∂M

√

−h0β0 ijkδβijk (4.30)

+6ρ10

∫

∂M

√

−h0h0
ijδh

ij − ρ10

2

∫

∂M

√

−h0Ω0
mpδh

mp.

Adding (4.30) and (4.31) yields

δS + δS1
ct + δS2

ct + δS3
ct = −7ρ8

2

∫

∂M

√

−h0δΦ + 7ρ10

∫

∂M

√

−h0h0
ijδh

ij , (4.31)

which cancel with the variation of S4
ct. Thus, when the dust settles one finds

δStot = 0. (4.32)

4.3 The boundary stress tensor

The counterterms constructed in section 4.1 are local functionals of the boundary fields

hij ,Φ, and βijk on ∂M . In analogy with the AdS construction, one might like to obtain

holographic one-point functions by varying the action with respect to these fields. Such

an approach should be possible, though it is complicated by the “momentum dependent

renormalization.”

Here we follow the treatment of section 3.2. Specifically, we use the definitions (3.34)

and (3.36) for the boundary stress tensor and the scalar response function respectively.

Again we introduce

T̃ij = lim
ρ→∞

ρ7Tij , and j̃Φ = lim
ρ→∞

ρ9jΦ. (4.33)

After some calculation one finds (see appendix A.2)

j̃Φ =
1

56

(

−124h1+39h1 ·Ω0+124p̂1−4

(

p̂1 · Ω0+
49

256
R1 · Ω0

)

+1001α

)

−
β1ijkβ0

ijk

16384
(4.34)

where h1 · Ω0 is the contraction of h1ij with the unit metric Ω0
ij on S3 i.e.,

h1 · Ω0 = h1ijΩ0
ij, (4.35)
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and similarly for p̂1 · Ω0, etc. The corresponding expressions for T̃ij are exceedingly long.

Instead of presenting an explicit expression, we simply note that T̃ij is the coefficient of 1
ρ7

in the expansion

Tij = −2

(

πij + K̂hij − 2K̂ij − 2Mij −
3

4
e−

5

4
Φ(Nα′)1/2βimnβj

mn (4.36)

+
1

8
e−

5

4
Φ(Nα′)1/2βlmnβlmnhij −

1

32
e−

7

4
Φβpmnβq

mnRpq(Nα′)3/2hij

+
1

16
e−

7

4
Φ(Nα′)3/2

[

2Rmnβnipβmj
p + 2R(i|p|βj)mnβpmn

]

− 7

4
e

Φ

4 hij + Dij

)

,

where Mij and Dij are defined as

Mij := hkl δ

δhij
K̂kl, (4.37)

Dij :=
(Nα′)3/2

16
e−

7

4
Φβp

mnβqmn δ

δhij
Rpq. (4.38)

By the general arguments given in [15] (and based on those of [40], (4.36) lead to

conserved quantities which generate the expected asymptotic symmetries. In particular,

the generator of an asymptotic translation ξi is

Q[ξ] := lim
ρ→∞

∫

Cρ

√

−hCTijξ
inj

Cρ
, (4.39)

=

∫

C

√

−h0
C T̃ijξ

inj
C , (4.40)

where Cρ form a family of Cauchy surfaces within the constant ρ hypersurfaces Σρ, such

that C = limρ→∞ Cρ is a Cauchy surface in the boundary ∂M . In (4.39), (4.40) ni
Cρ

, ni
C

are unit normals to Cρ, C respectively in (Σρ, hij) and (∂M,h0
ij). In section 5 we verify

that Tij gives the correct energy density and pressure for thermally excited linear dilaton

solutions.

5. Thermodynamics

As an application of our formalism, we now calculate the boundary stress tensor and

conserved charges of the thermally excited linear dilaton spacetimes. In particular, we will

demonstrate that our formalism agrees with the standard results for the two dimensional

black hole [17 – 22, 42].

Let us first look at the mass of the thermally excited solutions, (3.8)–(3.9), for the toy

model of section 3. The ADM mass of this solution is (cf. appendix B)

MADM = 8ea48V8. (5.1)

The factor of 48 is due to our use of yi = xi

4 (compare (3.4) and (3.6)). Here we assume that

the yi coordinates range over a compact space of coordinate volume V8. Another factor of

4 arises because our mass is defined by choosing ξ = ∂
∂y0 (as opposed to ∂

∂x0 ). With this

understanding the result agrees with [17 – 22, 42].
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We would like to verify that our counterterms construction also yields (5.1). To this

end, we expand the solution (3.8)–(3.9) around the background (3.6)–(3.7). After a short

calculation we find the subleading terms in the expansion of the metric (in gauge (2.11)):,

h1
tt =

6

7
48ea, h1

ii =
1

7
48ea, (5.2)

h1 =
2

7
48ea, α = −2

7
48ea. (5.3)

To calculate expressions (3.38) and (3.39) we also need the subleading terms in the expan-

sions of Kij and K̂ij , i.e., p1
ij and p̂1

ij . Expanding Kij yields

p1
ij = −3h1

ij . (5.4)

The calculation of p̂1
ij is slightly involved. We need to invert the relation (3.13) pertur-

batively using the equations of motion. The techniques to solve for p̂1
ij were developed

in [16] (appendix B) in the context of asymptotically flat spacetimes. Performing a similar

analysis for linear dilaton spacetimes and using the results of appendix C, one finds

p̂1
ij = h1

ij −
1

4
h0

ijh
1. (5.5)

A key step in this calculation is the use of equation (C.11).

Using (5.4) and (5.5) we simplify the expressions (3.38) to get

T̃ij =
1

2

(

−(9h1 + α)h0
ij + 16h1

ij

)

. (5.6)

Now we can easily calculate the mass and the other quantities from the counterterms. From

the relation (3.43) for the time translation Killing vector we find

Mct =

∫

C

√

−h0
C T̃ijξ

inj
C (5.7)

=

∫

C

√

−h0
C T̃ttξ

tnt
C (5.8)

=

∫

C

(

−1

2

(

9h1 + α
)

h0
tt + 8h1

tt

)

ξt
(

ρnt
)

(5.9)

= 8ea48V8 = MADM, (5.10)

where in the third step we have used the expression (5.6).

One can similarly calculate the pressures (i.e., the space-space components of T̃ij).

One finds the expected results [18 – 22, 42],

Tii = 0. (5.11)

We note that [42] arrived at (5.11) by assuming the first law of thermodynamics

dE = TdS. (5.12)

We have therefore verified that this law does indeed holds for thermally excited linear

dilaton solutions.
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For the thermally excited solutions of the type II theory it is also possible to calculate

the contribution of various terms in (4.36). It is a rather long calculation, but in the end

it gives identical results i.e.,

Mct = 8ea45V5(2π
2), (5.13)

Tii = 0 (for directions along R
6). (5.14)

and the first law dM = TdS holds.

Thus, our counterterm formalism reproduces results previously known in the literature.

For completeness, we have also calculated the scalar response function for both theories.

For the toy model one finds

j̃Φ =
1

8

(

−9h1 + 47α
)

= −2ea48. (5.15)

Again, one obtains the same final result in the type II theory via a somewhat longer

calculation.

6. Conclusions

Our work above addressed holographic renormalization of gravity in ten-dimensional

asymptotically linear dilaton spacetimes dual to little string theory. We have renormalized

the action in the sense that i) the renormalized on-shell action is finite and ii) the renormal-

ized action is fully stationary about solutions when the variations preserve asymptotically

linear dilaton boundary conditions. It would be interesting to understand in detail the

relation between our counter-terms and those proposed in [21, 22] (based on a different

construction) for two-dimensional linear dilaton spacetimes, in which the graviton itself

has no local dynamics.

We have computed the boundary stress tensor Tij and the scalar response function

jΦ for the toy model of section 3 and for the NS sector of type II theory. The stress

tensor is locally conserved, and gives the conserved charges which generate the asymptotic

symmetries. In particular, the rescaled limits T̃ij and j̃Φ give finite quantities on the R
6

which is the home of the LST. We also showed that our expressions reproduce known

results [17 – 22, 42] for the mass and pressure associated with thermally excited linear

dilaton solutions.

However, these response functions are not quite the one-point functions of little string

theory. Note that each of T̃ij or j̃Φ is built from the term in Tij and jΦ associated with

a single power of ρ. In contrast, we expect that different fourier modes5 k of the one-

point functions are associated with different powers of ρ; i.e., with ρν where ν = ν(k2).

Thus, we may expect that T̃ij and j̃Φ give only certain Fourier modes of the one-point

functions. Since they integrate to the correct conserved quantities, one may guess that

they correspond to the k2 = 0 part of the one-point functions. It would be interesting to

understand this relation in detail, and to use our renormalized action to compute the full

one-point functions.

5Here we take h0

ij to be the flat metric ηij .
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After posting this work on the arxiv, we discovered that boundary terms for the closely

related D5-brane spacetimes were also given in [46]. There the terms were given as part

of a family of boundary terms for all Dp-brane spacetimes, and were constructed using

techniques more familiar from the AdS context. The results were used to compute the

gravitational action (I) for Euclidean black 5-branes and the standard result I = 0 was

obtained. Interestingly, the basic form of the boundary terms from [46] appears quite

different from ours, and is more reminiscent of AdS boundary terms. While it is clearly

of interest to understand to what extent our results are related to those of [46], here we

simply note that p = 5 is a special case for which many of the expressions in [46] (e.g., the

boundary stress tensor) diverge, and that no claim is made in [46] regarding the staionarity

of the action. As a result, it is unclear whether a direct relation is expected.

Although holographic renormalization is most commonly studied for asymptotically

AdS spacetimes, our work here was based on techniques developed for asymptotically flat

spacetimes [15, 16]. Their success in the linear dilaton context emphasizes the similarity

between the two asymptotic behaviors. This connection was recently used to propose

a framework for holographic duality in asymptotically flat spacetimes [14], and further

exploration of this link should provide additional insight in the future.
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A. Boundary stress tensor calculations

This section contains the details of various calculations needed to obtain the boundary

stress tensor described in sections 3.2 and 4.3.

A.1 The toy model

In this appendix we calculate the expressions (3.34) and (3.36) in detail. To this end, we

find it convenient to separate the contributions of S0 from those of the counterterms. The

contributions from S0 are

T̃ orig
ij = −2

(

p1
ij − 9h1

ij − h0
ijp

1 + h0
ijh

1
)

, (A.1)

j̃orig
Φ = 8α, (A.2)

and the counterterm contributions are

T̃ ct
ij = −2

(

9h1
ij − h1h0

ij + p̂1h0
ij − 2p̂1

ij − 2M1
ij − h1

ij −
α

4
h0

ij

)

, (A.3)

j̃ct
Φ =

α

8
− 2M1

φ , (A.4)
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where we have used the expansions

pij =
1

ρ
Kij = h0

ij +
1

ρℓ
p1

ij +
1

ρℓ+1
p2

ij + . . . , and (A.5)

p̂ij =
1

ρ
K̂ij = h0

ij +
1

ρℓ
p̂1

ij +
1

ρℓ+1
p̂2

ij + . . . . (A.6)

In addition, M1
ij and M1

φ are coefficients in the expansion of hklδK̂kl defined through (see

also equation (3.27))

hklδK̂kl = . . . +
1

ρℓ−1
M1

ijδh
ij +

1

ρℓ+1
M1

ΦδΦ + . . . . (A.7)

Following [15] we calculate the variation hklδK̂kl as a power series expansion of ρ−1.

Our starting point is the defining equation (3.13) for K̂ij . Taking the variation of (3.13)

we find

δR̂ij := δRij +
eΦ/2

2
δhij +

eΦ/2

4
hijδΦ (A.8)

= δK̂kl

(

hklK̂ij + δk
i δl

jK̂ − δk
i K̂ l

j − δk
j K̂ l

i

)

+
(

K̂ijK̂mn − K̂imK̂nj

)

δhmn,

which can be written in the form

δR̂ij = Lij
klδK̂kl + Mijklδh

kl (A.9)

for

Lij
kl = hklK̂ij + δk

i δl
jK̂ − δk

i K̂ l
j − δk

j K̂ l
i , (A.10)

and

Mijmn = K̂ijK̂mn − K̂imK̂nj. (A.11)

We can invert the relation (A.9) to get

hklδK̂kl = hmn
(

L−1
)

mn
ij

[

δR̂ij − Mijklδh
kl

]

. (A.12)

We will evaluate (A.12) by performing an expansion of various pieces in 1
ρ . In partic-

ular, we introduce the expansions

L = L0 +
L1

ρℓ
+ . . . and

(

L−1
)

=
(

L−1
)0

+

(

L−1
)1

ρℓ
+ . . . , (A.13)

with a similar expansion for M . The index 1 refers to the next-to-leading order term in

the expansion. A simple calculation shows that
(

L−1
)1

ij
pq = −

(

L−1
)0

ij
kl

(

L1
)

kl
mn

(

L−1
)0

mn
pq (A.14)

where,

(

L−1
)0

ij
kl =

ρ

7

[

δk
i δl

j −
1

16
h0klh0

ij

]

, and (A.15)

(

L1
)

ij
kl =

1

ρ

[

p̂1
ijh

0kl − h1klh0
ij + δk

i δl
j(p̂

1 − h1) (A.16)

+
(

h0
jmh1ml − p̂1

jmh0ml
)

δk
i +

(

h0
imh1ml − p̂1

imh0ml
)

δk
j

]

.
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The first expression is given in [15] and the second expression can be easily calculated by

performing an expansion in ρ−1. With this information at hand we find

hklδK̂kl =
1

ρ2

(

h0mn − h1mn

ρℓ
+ . . .

)[

(L−1)0 +
(L−1)1

ρℓ
+ . . .

]ij

mn

(

δR̂ij − Mijklδh
kl

)

.

(A.17)

Now, equation (A.17) contains two types of terms. One type comes with a factor of

δR̂ij , and the other comes with a factor of Mijklδh
kl. The leading-order terms of the first

type are:

1

ρ2
h0mn(L−1)0mn

ijδR̂ij −
1

ρℓ+2
h1mn(L−1)0mn

ijδR̂ij +
1

ρℓ+2
h0mn(L−1)1mn

ijδR̂ij . (A.18)

After some calculation one may write these terms in the form

1

16ρ
h0ijδR̂ij −

1

7ρℓ+1

[

h1ij − h1

16
h0ij

]

δR̂ij −
1

112ρℓ+1

[

−7h1ij − 2p̂1ij + p̂1h0ij
]

δR̂ij .

(A.19)

Substituting the expansion for R̂ij and discarding the total derivative terms we find

hmn
(

L−1
)

mn
ijδR̂ij = −ρ

2
h0

ijδh
ij +

9

4ρ
δΦ+

1

28

[(

2p̂1−2h1−7α
)

h0
ij−10h1

ij−4p̂1
ij

] δhij

ρℓ−1

+
1

8

(

2h1 − 2p̂1 + 9α
) δΦ

ρℓ+1
+ . . . . (A.20)

Let us now move on to the terms with Mijklδh
kl. We first note the expansion for Mijkl

yields

M0
ijkl = ρ2

(

h0
ijh

0
kl − h0

ikh
0
jl

)

, (A.21)

M1
ijkl = ρ2

(

h0
ij p̂

1
kl + h0

klp̂
1
ij − h0

ikp̂
1
jl − h0

jlp̂
1
ik

)

. (A.22)

The term we need to expand is (cf. (A.12))

−hmn
(

L−1
)

mn
ijMijklδh

kl, (A.23)

and the result produces four terms:

−hmn
(

L−1
)

mn
pqMpqklδh

kl = (A.24)

−h0mn

ρ2
(L−1)0mn

pqM0
pqklδh

kl+
1

ρℓ+2
h1mn(L−1)0mn

pqM0
pqklδh

kl

− 1

ρℓ+2
h0mn(L−1)1mn

pqM0
pqklδh

kl − 1

ρℓ+2
h0mn(L−1)0mn

pqM1
pqklδh

kl + . . .

After some calculation we find,

−hmn
(

L−1
)

mn
pqMpqklδh

kl = −ρ

2
h0

klδh
kl +

1

7ρℓ−1

[

h1

2
h0

kl − h1
kl

]

δhkl

+
1

112ρℓ−1

[

−7h1h0
kl + 6p̂1h0

kl + 7h1
kl + 2p̂1

kl

]

δhkl

− 1

16ρℓ−1

[

p̂1h0
kl + 7p̂1

kl

]

δhkl + . . . (A.25)

= −ρ

2
h0

klδh
kl +

1

112

[

(h1 − p̂1)h0
kl − 9h1

kl − 47p̂1
kl

] δhkl

ρℓ−1
+ . . . .
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Combining the above results yields

δK̂klh
kl = −ρh0

ijδh
ij +

9

4ρ
δΦ + M1

ij

δhij

ρℓ−1
+ M1

Φ

δΦ

ρℓ+1
+ . . . , (A.26)

with

M1
ij =

1

16

[

(−h1 + p̂1 − 4α)h0
ij − 7h1

ij − 9p̂1
ij

]

, (A.27)

M1
Φ =

1

8

(

2h1 − 2p̂1 + 9α
)

. (A.28)

Substituting these expressions in (A.3) and (A.4) and combining it with the contributions

from the original action (A.1) and (A.2) we get the desired result i.e., equations (3.38)

and (3.39):

T̃ij =
1

4

[

−(h1 − 8p1 + 7p̂1 + 2α)h0
ij + h1

ij − 8p1
ij + 7p̂1

ij

]

, (A.29)

j̃Φ =
1

8

(

47α − 4h1 + 4p̂1
)

. (A.30)

A.2 NS Sector of Type II Theory

We now perform the corresponding calculations for the full type II theory. The general

framework is the same as for the toy model above. The contribution from S0 (equa-

tion (4.1)) to j̃Φ is

j̃orig
Φ = 8α, (A.31)

and the counterterms contributions are

j̃ct 1
Φ = −2M1

Φ, (A.32)

j̃ct 2
Φ = −75

2
α − 15

8
h1 · Ω0 +

5

8192
β1 ijkβ0

ijk, (A.33)

j̃ct 3
Φ = −7

4
h1 · Ω0 − 7

512
R1 · Ω0 +

147

4
α − 7

16384
β1ijkβ0

ijk, and (A.34)

j̃ct 4
Φ =

7

8
α, (A.35)

where MΦ
1 is the contribution coming from hklδK̂kl terms

hklδK̂kl = . . . +
1

ρℓ+1
M1

Φ + . . . . (A.36)

Using the techniques of the previous section one finds

MΦ
1 =

1

56

[

62h1 − 23h1 · Ω0 − 62p̂1 + 2p̂1 · Ω0 − 273α
]

+
1

8192
β1 ijkβ0

ijk, (A.37)

where h1 · Ω0 is the contraction of h1ij with the unit metric Ω0
ij on S3 i.e.,

h1 · Ω0 = h1ijΩ0
ij, (A.38)

and similarly for p̂1 · Ω0, etc. In obtaining the expression (A.37) we have used the expan-

sion (A.6) for K̂ij . Combining the above results yields equation (4.34),

j̃Φ =
1

56

(

−124h1+39h1 ·Ω0+124p̂1−4

(

p̂1 ·Ω0+
49

256
R1 ·Ω0

)

+1001α

)

−
β1ijkβ0

ijk

16384
. (A.39)
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B. ADM mass of the thermally excited solution

Following the Regge-Teitelboim construction [43] of the ADM surface terms [44] for the

action (3.1) we obtain

H[ξ] =

∫

d8Sd
√−qGabcd

[

ξ⊥δqab;c − ξ⊥,c δqab

]

−
∫

d8Sdξ
⊥√−qDdΦδΦ, (B.1)

where

Gabcd =
1

2

(

qacqbd + qadqbc − 2qabqcd
)

, (B.2)

and qab is the induced metric on a Cauchy slice. Here the semicolon(;) denotes the tor-

sion free covariant derivative with respect to the metric qab. For the thermally excited

solution (3.8)–(3.9) the scalar and the metric contributions to the ADM integrals for the

timelike Killing field are (in gauge (2.11))

scalar = −8

7
ea48V8, (B.3)

metric =
64

7
ea48V8, (B.4)

which sum to

MADM = 8ea48V8. (B.5)

Similar calculations for the action (4.1) and the solution (4.5)–(4.7) give

MADM = 8eaV54
5(2π2). (B.6)

In comparing (B.5) and (B.6), it is important to recall that, for the toy model, we rescaled

all boundary coordinates to arrive at the metric (3.6), but for the NS sector of the type II

supergravity we only rescaled six of the coordinates, those corresponding to R
6, to arrive

at (2.4). Thus, the factor V54
5(2π2) in (B.6) is in fact the natural analog of the factor 48V8

in (B.5).

C. Hypersurface splitting of the Riemann tensor

In this section we review, for the sake of completeness, the Gauss-Codazzi splitting of the

Riemann and the Ricci tensor. We use these results in section 5. Many of the results

reviewed here are standard and can be found in, for example, [45]. Following the deriva-

tion of the Gauss-Codazzi equations [31], we note the following two relations. When all

indices on the bulk Riemann tensor Rµνρσ of gµν lie in the hypersurface one finds (Wald

eq. (10.2.23))

Rijkl = Rijkl − KikKjl + KjkKil. (C.1)

For all but one index in the hypersurface one finds

Rijk⊥ = hi
µhj

νhk
σ (Rµνσγnγ) = hi

µhj
νhk

σ (∇µ∇νnσ −∇ν∇µnσ) (C.2)

= DiDjnk − DjDink (C.3)

= DiKjk − DjKik (C.4)
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where ⊥ denotes the direction perpendicular to the hypersurface (the radial direction ρ)

and the derivative Di is the (torsion-free) covariant derivative on ∂M compatible with the

boundary metric hij. Here we have used the Lemma 10.2.1 of [31] in the second line and

the definition of Kij in the last line. The identity (C.4) is a slight generalization of the

second Gauss-Codazzi equations which are obtained by tracing over indices i and k.

General expressions for the Riemann tensor with two indices perpendicular to the

hypersurface for the metric (2.9) are very complicated, though they simplify with our

choice of Gaussian normal gauge (N = 1, N i = 0). In this gauge one may use direct

calculation to find

Γ⊥
⊥⊥ = 0, Γ⊥

⊥i = 0,Γi
jk =(d−1) Γi

jk, (C.5)

Γ⊥
ij = −Kij and Γi

⊥j = Ki
j . (C.6)

Thus

Ri⊥j⊥ = −∂Kij

∂ρ
+ KikK

k
j . (C.7)

Corresponding relations for the Ricci tensor follow immediately:

Rij = Rij − KijK + 2KikK
k
j −

∂Kij

∂ρ
, (C.8)

R⊥i = DjK
j
i − DiK, (C.9)

R⊥⊥ = −hij ∂Kij

∂ρ
+ KikK

k
jh

ij . (C.10)

Inserting (C.8) in equation (3.2) and substituting the aysmptotic expansions for the metric,

extrinsic curvature, and dilaton one obtains the first order dynamical equation of motion

for the metric,

R1
ij = −4(α + h1)h0

ij . (C.11)
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